

DevOps for Embedded:

Automating Embedded Software Development

By

Hari Menon
Anurag J K
Adhil Xavier

31 August 2021

White Paper

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 1 Trenser Technology Solutions (P) Ltd.

INTRODUCTION

Traditionally, embedded software is often written for a chosen application-specific

hardware platform because of the limited computing capabilities and memory

availability. Hence embedded software implementation is mainly dependent on the

target hardware platform. The speed of embedded software development is slower

than other development domains like web and mobile applications. Though the

embedded platforms have become more powerful, the development process has

not changed much from the past. In this era of digitization and rapid change where

IoT is a critical component, improving the pace of development will be greatly

beneficial to reduce the time to market.

Embedded software is slowly becoming more independent from the hardware they

reside in, as the computing platforms are becoming powerful. Embedded software

development is unique, but the essential principles of DevOps can be applied with

the right tools and the right approach. The concept of virtualization can significantly

help the developers to extract the available infrastructure for software development.

Software for configuration management can be used with automatic verification and

validation. Configuration tools that support development and testing will help

accelerate the product cycle time. This will boost the confidence level for the initial

deployment of feature rollouts from production.

SCOPE

The scope of our study and experiment was to establish how best DevOps practices

can be adopted for increasing the pace of embedded software development. The

biggest constraint is that often testing must be performed in the target hardware

along with the peripheral devices and testing equipment, locally at the developers’

office. If the tests could be controlled and supervised over a network, avoiding the

need for a physical presence, that would be a leap jump. We found that starting with

version control and working towards automated testing, it’s possible to continuously

improve the embedded software delivery pipeline without the need for large-scale

reorganizations.

THE CHALLENGING SCENARIO

DevOps in an IT enterprise will have a generic development and execution

environment. Contrary to this, the embedded development environment is often

varying. The execution environment is usually different than the one used for

development. Hence, after building the software, the deployment to target devices

will be specific for each hardware, and the test devices might be at remote locations.

The other concerns that need to be addressed are different target hardware cross-

compilation, cross-debugging, memory footprints, and security issues.

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 2 Trenser Technology Solutions (P) Ltd.

The DevOps environment is a continuous feedback loop which is easy when the

development is on servers that are always online and under the user’s control. On the

other hand, embedded devices are likely to be remotely distributed, and they may

not always be online. So, various such issues come into play when considering

traditional DevOps for deployment.

The Ops part of DevOps for embedded is a challenge because, in a traditional

DevOps environment for the cloud, the Ops is standard for developers running a

website or developing an application with a cloud interface. However, when dealing

with embedded, it is about devices in the field. The deployment (OTA) is not a

standard process and varies for different manufacturers, and no common approach

is available. Hence it needs assistance from the device manufacturers and cannot be

a completely “closed-loop” situation, like in the case of a cloud-based enterprise

product.

OUR APPROACH

Unlike DevOps in cloud applications, the approach for Embedded needs to be

different. The key here is how far we can bring in automation. Most of the “Dev” part

in DevOps can be reused by adjusting existing proven solutions. But when it comes to

“Ops”, things become a bit complicated. There is no ready-to-use solution available.

Traditionally manual operation works best with a physical hardware environment.

However, those are also not far from automating. The potential approach here is a

device that can act as a broker in between the target hardware, which can perform

the physical tasks in an automated way.

We are presenting an approach with a custom OS image that can be used to

develop, build, and unit test the embedded software, which will be deployed to the

target hardware via a sandbox server running in a single-board computer like

Raspberry Pi or Beagle Bone. A generic web application in the sandbox server shall

be used for communicating with the target hardware. The figure below shows the

high-level concept.

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 3 Trenser Technology Solutions (P) Ltd.

The technologies can vary based on the target platform to the skill set of the

developers. The best suited mix are:

Development Phase Automation Approach/ Tools

Dev Customized OS Image in Docker or as VM in Virtual box

or VMWare.

Source Code Repository GitHub, Gitlab or Azure

CI/CD Pipeline GitHub Actions, Gitlab CI or Azure Pipelines

Deployment Raspberry Pi or BeagleBone

Monitoring NodeJS/ Python based web app viewed from Chrome

or Firefox.

SOLUTION DETAILS

The figure below shows the step-by-step workflow of the proposed approach taken

by us in the specific case we experimented.

Figure I: Overview

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 4 Trenser Technology Solutions (P) Ltd.

1. Prepare Base Image:

First things, first. For every project, the initial challenge lies in setting up a working

environment that includes a test setup and a development environment. When it

comes to setting up a development environment for embedded, you need to set up

the toolchain, compiler, linker, etc., before starting. The ideal solution to avoid a delay

in starting is to prepare a common development environment that includes the base

host image installed with dependent libraries, toolchains, compiler, etc. This base

image can be converted to a virtual machine image or as a docker container. Here

we chose Docker containers for ease of development.

2. Chose Git Repository Management Tool:

There is no confusion on choosing Git as the source code repository. But when

selecting a management tool, we have options like GitHub, Gitlab, Azure, etc. All of

them have advantages and disadvantages. To get started quickly, we think GitHub is

the best choice.

3. Create CI/CD Pipeline:

Based on the repository management tool selected, the pipeline also differs. Here we

will make use of GitHub Actions as our CI/CD pipeline. The pipeline shall contain the

workflow jobs to pull off the development image, clone the repository, build and

execute unit tests. The result of the pipeline shall be the executables for the target

hardware.

4. Setup Webhook and Deployment:

In most cases, the real hardware may not have direct access to the internet by

default. So, a broker device that will be running preferably on a Single Board

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 5 Trenser Technology Solutions (P) Ltd.

Computer like Raspberry Pi/ Arduino can be used as an interlink, which gets the build

image from the pipeline and transfers the same locally to the target hardware.

Considering the features and community support, we propose Raspberry Pi here. The

Raspberry Pi and the pipeline must be connected through a webhook notification

event. Whenever a new build is available at the cloud server, a notification will be

received in the web application running in Raspberry Pi, and further deployment can

be initiated.

5. Device Setup

Peripheral devices are interfaced to the sandbox via a communication bus (say, via

I2C bus) and various hardware interfaces required by the target hardware and test

equipment involved. The target device also will need special software hooks to

interact with the sandbox server to act and respond to the hardware level interactions

via communication bus and various peripheral devices and test equipment. These

hooks will also include redirecting the debug logs and hardware responses back to

the sandbox server via the communication interface.

6. Monitor/ Test/ Debug:

A NodeJS or Python web server will act as a “bridge” for the user who wants to perform

some actions on the actual hardware. The web application shall have the option to

select the interfaces to which inputs to be provided, and once the input is processed,

the output can be monitored as well. This application can be enhanced for real-time

debugging and performing functional tests by inputting more sophisticated scripts

with improved functionality.

A TYPICAL WORKING SETUP

In developing embedded systems, testing on the target device is mandatory to

capture bugs that may show up only in the real hardware. Figure 3 shows a typical

working setup. For functional verification, manual testing is done by developers when

new features are implemented. This can be time-consuming and error-prone.

There should be a test branch that is properly named and maintained always to have

the latest source code (main branch). After implementing a feature, the developer

will push changes to the same branch. The compiling, building, and unit testing can

be done as part of CI/CD pipeline. Unit testing is also performed at this stage.

Developers need to update the scripts to perform unit tests. If the unit test fails, the

developer will get notifications regarding the status and will stop other processes

involved.

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 6 Trenser Technology Solutions (P) Ltd.

Sandbox server will get a webhook notification event whenever a new build is

available from the pipeline task. Upon receiving notification, the Sandbox server will

fetch the latest binary and make use of the programming hardware for flashing the

binary to the test device or directly installing it on hardware.

Developers need to create a Flash script that contains the commands for flashing or

transferring the executable to the test device. The programming hardware may be

JTAG, serial, or any other interface. Sandbox server must be installed with proper

drivers and software required for the programming hardware. In many cases, the

programming hardware might not be necessary, with the availability of in-circuit

programming capability of the platform, and hence a simple SSH file transfer will be

all that is needed.

Once the binary file is flashed successfully, the total functionality can be tested.

Functionality testing is done using an F-test script. This script will utilize special

commands for interacting with the peripheral devices. Necessary drivers for

supporting the peripherals shall be readily installed in the Sandbox server. Peripheral

devices are connected to sandbox via a communication bus (say, via I2C bus) and

can be used for (but not limited to) the following:

- GPIOs / Relays

- UART

- SPI

- I2C

- CAN

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 7 Trenser Technology Solutions (P) Ltd.

If any F-test script or flash script fails, an email will be sent with required details, and

corresponding logs of the failed script will help determine the cause of failure. The test status

will be sent to the concerned personnel upon completion of the test as well.

Figure IV: Accessing the Raspberry Pi terminal through which the user can get

access to the device if required.

Figure V: A CAN peripheral page where user can view and send CAN

messages in device

White Paper DevOps for Embedded: Automating Embedded Software Development

Page 8 Trenser Technology Solutions (P) Ltd.

A web application will allow developers to opt for the required setup to perform the

test. It will provide an interface where the developers can interact with the real

hardware. They could even manage their scripts used for building (Build script),

flashing (flash script), or even for the total functionality test (F-test script). The

developers are given a chance to customize the test by opting for the peripherals

required to perform the module-level testing.

With consistency in the integration process in place, teams are likely to commit code

changes more frequently, which leads to better collaboration and software quality.

Continuous Delivery picks up where continuous integration ends. Continuous Delivery

is established by automating quality gates and building confidence in the code to

move from development to production. Continuous Deployment starts with manual

approvals and identifies how to establish and then automate the quality gates.

CONCLUSION

The practices and tools described in this paper can be effectively utilized to

implement a DevOps-like system in embedded software development. Bare metal

systems are, however, not considered. This approach can be adopted for moderately

powerful computing platforms, especially platforms that run any RTOS or Embedded

flavors of Linux. Our approach features development, testing, and deployment (until

the product testing stage) in the Embedded platform. Creation of the base image

shall be a one-time process during the start, and whenever a new developer joins the

team, he can be productive from day one; thus, the developer can adapt to a new

project with minimum effort and time.

As we are using an automated system for continuous testing, which is a time-

consuming and repetitive task, developers will be relieved to work on more

productive and fruitful tasks. Identifying, tracking, and documenting bugs now

becomes seamless as proper logs and reports are generated.

The automated deployment process can be further extended to move your software

from testing and production stages to field deployments by automating device-

specific OTA processes. However, this needs several considerations of the installed

environments and application criticality, as indicated in the challenges section. If

implemented, it creates a repeatable deployment process across the entire software

delivery cycle. This helps you release new features and applications more quickly and

frequently, reducing the human interventions in the deployment.

